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Realistic Surgical Simulation from Monocular Videos

Abstract

This paper tackles the challenge of automatically performing realistic surgical simulations
from readily available surgical videos. Recent efforts have successfully integrated physi-
cally grounded dynamics within 3D Gaussians to perform high-fidelity simulations in well-
reconstructed simulation environments from static scenes. However, they struggle with the
geometric inconsistency in reconstructing simulation environments and unrealistic physical de-
formations in simulations of soft tissues when it comes to dynamic and complex surgical pro-
cesses. In this paper, we propose SurgiSim, a novel automatic simulation system to overcome
these limitations. To build a surgical simulation environment, we maintain a canonical 3D
scene composed of 3D Gaussians coupled with a deformation field to represent a dynamic sur-
gical scene. This process involves a multi-stage optimization with trajectory and anisotropic
regularization, enhancing the geometry consistency of the canonical scene, which serves as the
simulation environment. To achieve realistic physical simulations in this environment, we im-
plement a Visco-Elastic deformation model based on the Maxwell model, effectively restoring
the complex deformations of tissues. Additionally, we infer the physical parameters of tissues
by minimizing the discrepancies between the input video and simulation results guided by es-
timated tissue motion, ensuring realistic simulation outcomes. Experiments on various surgical
scenarios and interactions demonstrate SurgiSim’s ability to perform realistic simulation of soft
tissues among surgical procedures, showing its enormous potential for enhancing surgical train-
ing, planning, and robotic surgery systems.

1 Introduction

Realistic surgical simulation systems are pivotal in enhancing clinical training, offering substantial benefits for
training surgeons, and advancing the development of robotic surgery systems (18; 35). Currently, mainstream
surgical simulation systems such as LaparoS ™ from VIRTAMED are commercial products that primarily utilize
mesh-based technology.
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Figure 1: An overview of SurgiSim. From an input surgical video, we first reconstruct a 3D scene as the simula-
tion environment, then estimate its physical parameters based on a Visco-Elastic deformation model, and finally
perform realistic simulation dynamics in it. The green parts are surgical tool masks and the blue arrows indicate
the directions of applied forces in simulations.

While these systems provide highly realistic simulations, their performance and reliability heavily depend on
labor-intensive mesh building and physical parameter tuning. The dependence on the skills of modelers and
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animators limits the variety of possible simulation scenarios. In this paper, we aim to develop a high-quality
and flexible simulation system capable of automatically converting real surgical videos into surgical simulation
environments as well as performing high-fidelity and realistic simulations.

Building high-quality surgical simulation systems from readily available surgical videos poses significant chal-
lenges, including the reconstruction of simulation environments from monocular videos with complex rigid and
non-rigid deformations and accurately modeling the soft tissues for realistic surgical simulation. Fortunately,
recent advancements in scene reconstruction and physically grounded dynamics offer plausible solutions. Meth-
ods based on Neural radiance fields (NeRF) (47; 54; 53) and 3D Gaussian Splatting (3DGS) (46; 56; 34) have
demonstrated impressive capabilities in reconstructing surgical scenarios. Besides, PhysGaussian (50) combines
continuum mechanics with 3DGS and employs the Material Point Method (MPM) to simulate realistic motions
in reconstructed models under simple point load. However, despite these technological strides, two significant
challenges still obstruct the realization of the target system.

Firstly, current methods cannot reconstruct geometrically consistent surgical simulation environments. Re-
cent advances in dynamic tissue reconstruction have shown promising capabilities by modeling tissues using
canonical scenes with deformation fields (51; 34; 47; 54; 53). However, these methods typically treat dynamic
tissue reconstruction as a task of synthesizing high-fidelity images at specific timestamps. Under this definition,
the deformation field is optimized to produce visually plausible results for each individual frame rather than main-
taining consistent geometry across time. Consequently, the geometry mapping between the canonical scene and
different timestamps becomes physically implausible. In surgical simulations, these geometric inconsistencies
lead to significant artifacts such as fragmentation and messy deformations. Thus, it is crucial to develop a method
capable of efficiently transforming surgical videos into high-quality, geometrically consistent, and simulation-
ready environments.

Secondly, current methods fail to simulate complex tissue deformations. Current representative simulation
methods, such as PhysGaussian (50), primarily employ a Plastic-Elastic model with uniform simulation parame-
ters assigned manually across the entire subject. This design falls short in capturing the complicated deformation
behaviors inherent in real surgical scenarios. Moreover, the manual assignment of physical parameters to the
simulation subject compromises the realism of the simulation. Recent research (60; 33) propose to leverage dif-
fusion priors, either in the form of generated videos or through score distillation sampling (SDS) (41) to estimate
physical parameters and avoid the need for manually assigned parameters. While these diffusion-based methods
are effective in simple scenarios such as handling natural fluctuation, they fail in more complex surgical situations
that involve external forces from operations like pulling or cutting. Moreover, current medical video generation
models (27; 45) are still in the early stages of development (5), and the quality of their output is insufficient to
provide guidance for simulations.

To address the aforementioned challenges, we propose SurgiSim, an automated system for realistic, high-quality
surgical simulation leveraging readily available surgical videos. SurgiSim incorporates a novel module that em-
ploys 3DGS (23), an explicit 3D representation capable of real-time rendering, to construct a canonical scene
from surgical video footage. This module utilizes multi-stage optimization with trajectory and anisotropic regu-
larization to enhance geometry consistency, complemented by a surface thickening method to enrich reconstructed
tissue content for improved simulation fidelity. To better model tissue deformations across various surgical sce-
narios, we implement a Visco-Elastic deformation model based on the Maxwell model (21). We further employ a
physics-guided parameter estimation method to acquire physical parameters of tissues, leveraging observed phys-
ical effects in the input video. Specifically, we utilize point tracking (25) and depth estimation (55) to derive the
tissue motions induced by external forces, with physical parameters optimized through differentiable simulation
and rasterization. This method ensures high-quality simulation with realistic physical effects, closely mimicking
the complexities of real surgical scenarios. Extensive experiments across diverse surgical procedures demonstrate
SurgiSim’s capability to realistically simulate soft tissue interactions, highlighting its potential for enhancing
surgical training, planning, and robotic surgery systems.

‘We summarize our contributions as follows.

1. An automatic system that takes only a monocular surgical video as input to a) build a simulation-ready
surgical environment with physics parameters estimated based on the input video and b) perform realistic
physics-based simulation in it.

2. A novel multi-stage optimization strategy for 3DGS that ensures geometric consistency across temporal
deformations, enabling reliable simulation environments.

3. A Visco-Elastic deformation model, coupled with automated physical parameter estimation from video
observations using point tracking and depth estimation, facilitates high-fidelity and realistic surgical
simulations.
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2 Related Work

Dynamic Scene Representations. The rapidly advancing field of Neural Radiance Filed (NeRF (39)) and
3DGS (23) has garnered significant interest for dynamic scene reconstruction. Early works based on NeRF (1; 4;
11; 30) model scenes with implicit representations, which are difficult to interact with and therefore unsuitable for
simulation. Later works based on 3DGS (49; 37; 36; 31; 57) use explicit representation, but require multi-view
images or videos with severe movement of cameras, which is hard to obtain in the field of surgery. Recently, some
other research (47; 54; 53; 56; 34; 51; 19; 61; 29) has focused on the reconstruction of dynamic surgical scenes.
However, these studies either still use implicit representation, or primarily aim to reconstruct the dynamic scenes
at specific timestamps, instead of the geometric continuity and consistency of the reconstructed canonical model.

Material Point Method. Material Point Method is a hybrid Lagrangian/Eulerian discretization scheme for solid
mechanics (16). The MPM system’s inherent ability to handle topology changes and frictional interactions makes
it well-suited for simulating a wide range of materials (50). including elastic objects, sand, cloth, hair, snow and
lava (9; 7; 12; 14; 15; 20; 48). In addition, modern implementations of MPM utilize the parallel ability of GPUs
to achieve advanced efficiency(10). Recently, Xie et al. (50) uses GPU-based MPM to efficiently incorporate
dynamics into different scenarios using a unified particle representation within the Gaussian Splatting framework.
However, their methods rely on manually assigned physical parameters, and assume the parameters to be the same
over large regions. Follow-up works by Zhang et al. (60); Liu et al. (33) further utilize the differentiable ability
of the simulation process to estimate the parameters in MPM guided by Diffusion Models (2). These methods
extract the physical prior from generative models, which is unreliable in the surgery field.

Surgical Simulation Systems. Medical simulation systems are based on the deformation models used to handle
tissue motion under the interaction of external forces (38). Early systems apply mainly heuristic approaches like
deformable spines, spring-mass models or linked volumes (6; 22; 13; 8). These systems are limited by the com-
puting hardware and only perform simple simulations. With the development of computer graphics technology,
later methods and products either base the simulation on manually built mesh models and predefined animation
or replay real videos captured for VR simulators (28; 26). They require expensive human labor or advanced hard-
ware or VR video capture but provide limited interaction. Recently, Yang et al. (58) proposed SimEndoGS, a
data-driven system based on 3DGS and MPM. However, they use an elastic model to capture tissue motion and
only support minor interactions like tiny force impulses.

3 Method

We propose SurgiSim (as illustrated in Fig. 1), an automatic system for surgical simulation, which constructs
realistic surgical scenes as well as performs realistic simulations. The input of the system is a monocular surgical
video with obvious tissue motion caused naturally or by surgical instruments. The system will reconstruct a simu-
lation environment with physical parameters inferred from the video, and then perform high-fidelity simulations.
The following sections detail the methodology: Sec. 3.1 details foundational techniques. Sec. 3.2 describes the
reconstruction of a high-quality canonical simulation environment from a surgical video using a multi-stage opti-
mization process with trajectory and anisotropic regularization. Sec. 3.3 demonstrates how we model the complex
deformations of tissues, thereby facilitating high-quality simulations.

3.1 Preliminaries

3D Gaussian Splatting. We use 3D Gaussian Splatting (23), a novel differentiable rendering method which
represents scenes with collections of anisotropic 3D Gaussian Kernels G = {G; : p;,0;, %, C; }Y.|, where
iy 07y 2;, C; represents the position, opacity, covariance matrix, and spherical harmonic (SH) coefficients of the
¢, Gaussian from all IV Gaussian kernels. The covariance matrix X is further decomposed into rotation matrix R
and scaling matrix S. To render an image through the differentiable rasterization of 3DGS, 3D Gaussian kernels
will be projected onto the image plane, and the RGB color is computed as

i—1
C= ) aSH(d,C) ][]0 -y, (1
i€{N} j=1

where SH denotes the computation of color values based on the given view and SH coefficients, d; is the view
direction from the camera to G;, and «; represents the effective opacity ordered by z-depth, calculated by mul-
tiplying the 2D Gaussian weight with each point’s inherent opacity o;. To integrate 3DGS into the simulation
pipeline, we view Gaussian kernels as particles carrying properties.
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Continuum Mechanics. Continuum mechanics models motion with a transformation map x = ¢(X, t), where

x represents a material point in the world space Q' at time ¢, deformed from point X in the undeformed material
space Q°. The deformation gradient, F = 3_;2’ describes local motion and strain (3). In continuum mechanics,
the two primary constraints are mass conservation and momentum conservation, given by

[t = [ pX,0), plxt)vlxt) = V- o) + £ @
ot Qo

where Q! € Q! is an infinitesimal region, p and v denote the density and velocity filed respectively, and £ is the
external force. o is the Cauchy stress tensor, usually related to a given energy function W.

Marerial Point Method. Material Point Method (MPM) discretizes the continuum into a collection of La-
grangian particles. The mass conservation of each particle ensures the overall mass conservation. Following Stom-
akhin et al. (44), we use particle-to-grid (P2G) and grid-to-particle (G2P) to transfer properties between these par-
ticles and an Eulerian grid. The momentum conservation is ensured on the grid where the calculation is simpler
and more natural. In each simulation step, the mass and momentum are first transferred from particles onto the
grid. The stress tensor is used to update the grid velocities, and the velocities will be transferred back to update
particle states. The velocities on the grid are updated as

vt =y % -P2G({o}), V;“Ll = G2P({vI'™}) 3)

where P2G is the transfer of stress from particles to the grid and G2P is the reverse transfer. n denotes the
n-th simulation step, each lasts for At, and v;, v; denote velocity vectors on the i-th grid node and j-th particle
respectively. Gravity is ignored in our implementation. Please refer to the supplementary materials for further
details on MPM.

3.2 Simulation environment setup

In this section, we first describe the process of constructing a static simulation environment (canonical 3D scene)
from a dynamic surgical video. Subsequently, we detail the regularization techniques designed to enhance geo-
metric consistency, along with the surface thickening methods used to complete the canonical scene.

Data Preparation. Given a monocular RGB surgical video {C%}Z | with T frames, we first use SAM (24)
segment frames to generate tissue masks {M*}Z_,. Then we employ a video inpainting method (32) to inpaint
the RGB frames on the areas covered by surgical instruments with {M*}7_,. These inpainted images {C*}]_,

are input to Depth Anything v2 model (55) to estimate depth {D*}7_, .

Canonical Scene Reconstruction. The frames and their corresponding depths from data preparation are used to
build a canonical 3D scene composed of 3D Gaussians, which later serves as a simulation environment. Inspired
by Wu et al. (49); Liu et al. (34), we use a deformation field D to model the 4D deformation of a canonical 3D
Gaussian model G°. To achieve this, we start by initializing a coarse 3D Gaussian model using RGBD projection
using the inpainted first frame and the corresponding estimated depth. Pixels in other frames will be projected
into the coarse 3D Gaussian model if they belong to the mask area of all previous frames. The deformation field
D is composed of a set of multi-resolution feature planes {V;;} C R NixINi and an MLP 6, where h is the
hidden feature size, [ is the upsampling scale and NV is the resolution parameter. To query the deformation of a
Gaussian kernel Gy, : g, ag, X, Ck, we first calculate the voxel feature:

fv = Ulcrp(vij»p‘k)a ij € {xy,xz,xt,yz,yt,zt}. 4)
l

Here lerp denotes 4-nearest bilinear interpolation. Then the feature is decoded by the MLP,

Ap, Ao, AR, AS = 6(fy), 5)
and the attributes of the deformed Gaussian can be computed as
G, = (ugp + Ap, 0 + Ao, S(Ry, + AR, Sk + AS), Cy). (6)

Different from previous methods (49; 34), we allow the opacity to change during deformation. The opacity of
tissues would change significantly when we pull it hard, unlike common objects. To render the deformed Gaussian
model at a certain timestamp for optimization, we use the deformed attributes calculated above for rasterization
in Eq. 1.
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Multi-Stage Optimization. Our key goal is to create a surgical scene that allows for high-quality surgical
simulation rather than generating high-fidelity images at specific timestamps, which all previous tissue recon-
struction methods (54; 53; 34; 51) aimed for. Thus, our design focuses on maintaining the geometric consistency
of the canonical Gaussian model G° during the deformation process. Specifically, we design an explicit trajectory
regularization strategy to prevent positional interleaving during deformation, which otherwise leads to faulty op-
timization of the canonical model. This regularization requires that the trajectories of Gaussian points within any
small region tend to be parallel within a short period of time. For a Gaussian model G, we first find the k-nearest
neighbor point set V; for each Gaussian G;. For a certain timestamp ¢, the regularization is given by

Apt - Aut
P . S SV NPT W TN

. ¢
o o TR T
t t
= Y Au-Aul (7)
G;,GLEN;
where Ap! means the deformation vector from the previous timestamp, i.e., puf — ,ufl. This regularization

consists of two main parts. The first part requires the deformation direction to be parallel to avoid tangential
misalignment in the direction of motion. The second part requires the movement length to be small to avoid radial
misalignment.

The multi-stage trajectory optimization contains three stages: 1) Optimizing only the canonical model G° and the
deformation field D (the feature planes and the MLP) to estimate the coarse trajectory. 2) Adding the trajectory
regularization to refine the trajectory of all Gaussian kernels. 3) Freezing the deformation module and only
optimizing the attributes of the canonical model G°.

Additionally, an anisotropic regularization proposed to prevent excessively large or extremely anisotropic Gaus-
sian kernels is employed across all the stages mentioned above. It is defined as:

Lyeo = Z (ReLU (max(S;) — rm)
€N}
+ ReLU (max(S;)/ min(S;) — ani)) 8)

where r,,, = 1 is the max scaling limit, and 7,,; = 3 is the anisotropic factor.

Surface Thickening. Due to the limited camera view, the reconstructed canonical model G° is a single surface
with invalid thickness and volume for simulation. To address this, we apply a surface thickening method, pushing
the Gaussian kernels in G" along the z-axis with a certain probability. The thickening algorithm is described in
Algo. 1.

Algorithm 1: Surface Thickening Algorithm

Input : The canonical Gaussian model Gg°
Output: A thickened model for simulation G

Initialize GJ + G°;

{Tm, M, Ym, YM, Zm, 2m } < bounding box of G;

for Layer [ in range(1, 1000) do

for Each Gaussian kernel GY in G° do
G+ GY;
The position of G%: il < pf - (rand(3) + 1)/1000;
if GL in {Zm, M, Ym. UM, Zm, (1 + 0.25)zum } then
Gi + Gi U{Gi};
return GJ;

3.3 Physics-based Realistic Simulation

In this section, we first introduce how we model the complex physical effects of tissues with the Visco-Elastic
model. Then we demonstrate how we use this model and input video to infer the physical parameters. For
better understanding, we employ conventional notations from physics. This may lead to some repetition of the
previously defined notations. These corrupted definitions are only used in this section, and their meaning will be
re-defined.
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Figure 2: Illustration of our physical parameter estimation. SurgiSim automatically infers physical parameters by
minimizing the discrepancy between rendered simulation results and the input video through differentiable MPM
and rasterization.
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Modeling Tissues with Visco-Elasticity Deformation. Previous methods (50; 60) primarily employ elastic
models for simulation, which restricts their performance to jelly-like effects that oscillate back and forth. How-
ever, in surgical settings, due to the complex composition of tissues, their deformations are usually very compli-
cated in physical behaviors, which significantly differ from these jelly-like ones. To better model these specific
effects, we involve a Visco-Elastic model (42), which consists of an elastic part and a viscous part to model the
complex deformations.

For the elastic part, we use fixed corotated elasticity. The energy function is defined as:
A
U(Fg) = ¥(Sp) = e Y (0p; —1)° + 5 (det Fg — 1)?, ©)

where the elastic deformation gradient Fg is decomposed into UEEEVE through SVD, og; are the singular

values of Fg. g = s-2— and A\g = are physical parameters, namely Shear modulus and Lamé

E
2(14v) (1+I/)(1{72V)
modulus, computed from the Young’s modulus E and Poisson’s ratio v. The Cauchy stress tensor for the elastic
partis og = ﬁd‘(;,—‘l’]‘:(FE)F;Sr The update rule of Fg is
Fptl = Fg I+ At-Vv;), (10)
and j denotes the j-th particle.

As for the viscous part, we get inspiration from Simo & Miehe (43), Johnson & Quigley (21) and propose a
simple model regarding viscous energy dissipation to integrate it into the MPM. The viscous energy dissipation
is described through a dissipation potential, given by

OF, 1 OF,\ ' OF,
U(—)==nvt — | —— . 11
) 2"Vr<<8t> 8t>’ an
where 7y is the viscosity coefficient. The gradient of the viscous deformation gradient Fy can be updated by
‘{%‘L =~v-D,and D = %(ij + VVJ-T) is the symmetric part of the grid velocity. The viscous Cauchy tensor is
oy = det(Fy) - 2nD, and Fy, can be updated by

Ft =Fy ,(I+At-D). (12)
The overall stress tensor o = og + o is used to update the grid velocity.

Tissue Motion Estimation. To estimate physical parameters, we involve extracting the physical priors of tissues
from surgical videos. This process comprises two main steps: 1) recovering the tissue motion induced by external
forces from instruments as captured in the input video, and 2) refining physical parameters by minimizing the
discrepancies between the simulated dynamics guided by the tissue motion and input video.

One straightforward way to recover motion in MPM simulation is to estimate the forces involved. However, due
to uncertainties in system dynamics, accurately estimating forces is a challenging task (40). Instead, we turn to
estimating the 3D trajectory of tissues. We start by selecting pixels on the tissues near the contact point with the
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surgical instruments and employ a 2D dense optical tracking method (25) to capture the 2D trajectories of tissue
movements directly influenced by the external forces. We then augment these 2D trajectories with estimated depth

values, {D*}7_,, to derive 3D trajectories, {p*}7_,.

To accurately recover motion in the video, we update the velocity during MPM at time ¢. Specifically, we adjust
the grid velocity in a small region B° € QU around the starting point of the 3D trajectory p®. The velocity is
updated according to the following formula:

pnt+1 Nt

p-—P
AT ’
where AT is the video frame duration and n; is the frame index that n, AT < ¢ < (n¢ + 1)AT.

(13)

t
Vo =

Physical Parameter Estimation. We then use the input video to estimate the physical parameters of tissues.
This estimation is achieved by minimizing the discrepancies between frames from the input video and the simu-
lation results driven by estimated motion at the time of the frames, as shown in Fig. 2.

Firstly, we run Ait simulation steps to get the simulated model G4 deformed from the dense model GY, and then

rasterize the model as (31; with Eq. 1. In this way, we align the simulation results with the input video. We then
optimize the parameters using
L, =|C—CL||; - M". (14)

Due to the influence of previous simulation steps on subsequent ones, we implement training in a rolling manner.
Specifically, we begin by optimizing with the first & video frames. For each new round, we start from the first
guide frame and add additional k frames until the guide length surpasses the video length. A parameter smoothing
is conducted every k frame. For each neighbor group V; for each Gaussian G4 ;, we apply a total variation loss:

Lo = MSE (&~ &), (1s)

where £ is one of the physical parameters, namely ug, 7y and 7,,. We set vg to a constant value of 0.45, because
we have found that variations within the valid range have little impact on the results.

4 Experiments

4.1 Implementation Details.

Dataset. We evaluate our method on the EndoNeRF dataset (47), which comprises several surgical video clips
totaling 807 frames. Each clip, captured by stereo cameras from a single viewpoint, spans 4-8 seconds and
shows typical soft tissue scenarios encountered in robotic surgery, including complex non-rigid deformations. We
utilize 5 of these clips to establish our simulation environments, excluding one clip that involves significant tissue
cutting. Though EndoNeRF is a binocular dataset, we use only the left image and no binocular depth. Please refer
to supplement material for demos on more clips beyond EndoNeRF.

Environment and Simulation Setup. Our environment setup employs a multi-stage optimization process con-
sisting of 5000 iterations. The initial stage, comprising the first 50% of iterations, focuses on optimizing the
canonical model G° and the deformation field D. This is followed by a trajectory regularization stage from 50%
to 70% of the total iterations. A refinement period then occurs from 70% to 90%, allowing for further optimiza-
tion of the deformation field after its correction by trajectory optimization. In the final stage, occupying the last
10% of iterations, we freeze the deformation field and fine-tune the canonical model. For the simulation, we
adapt the MPM framework from Xie et al. (50); Zong et al. (62). The thickened model g(? is normalized into a
2-unit cube, overlaid with an Eulerian grid of resolution 50 x 50 x 50. We established a conversion rate where
10,000 simulation steps correspond to one second of video at 25 fps. For each operation in the simulation, we
conduct 80k simulation steps to form an 8-second video. To perform a simulation operation, physical parameters
estimated from previous simulations are loaded onto the simulation scene for initialization.

User Study. To evaluate the fidelity of our simulations, we conducted a user study involving 68 participants
including both surgeons and laypersons. For More details, please refer to the supplementary material.

4.2 Comparisons on Surgical Simulations

We first provide qualitative comparisons on surgical simulation in Fig. 3. We primarily compare with three
simulation baselines: 1) A baseline using our simulation environment and native PhysGaussian (50) as simulation
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Figure 3: Visualization of simulations. We show the trajectory direction with a blue arrow and the motion of the
tissues with a red line. The external force caused by the driving trajectory ends at 2.52s (63 frames), after which
the tissue rebounds freely. SurgiSim consistently produces the most realistic simulation dynamics. Please refer to
the supplementary material for more simulation results.

SurgiSim  w.o. video guide Baseline

Figure 4: Y-T slices of simulation dynamics. The slices at x = 400 capture the motion of tissues being lifted and
then released. The slices at z = 520 capture the oscillations after the rebound.

X position

backend, without our Visco-Elastic model and estimated parameters; 2) A pointcloud-based MPM approach, Pcd
for short; 3) A triangle mesh simulation with the same MPM, Mesh for short. The MPM is built on the string-
mass model from Taichi (17) framework. All methods share the same manipulation during simulation. In real
world, due to the viscous properties of tissues (42), under this manipulation, the tissue will quickly return to a
stationary state rather than oscillating back and forth. The simulation results demonstrate that SurgiSim achieves
superior simulation results compared to baseline in both visual quality and realism. Our approach generates
more realistic tissue deformation responses and interaction dynamics, closely mimicking the behavior observed
in actual surgical scenarios. In contrast, the baseline often produces unrealistic elastic behavior that deviates from
true tissue properties. Pcd and Mesh suffer from fragmentation, artifacts and unnatural motion during simulation.
We also provide results of SimEndoGS*, our own implementation of a SOTA method SimEndoGS (58), which
is not yet open-source. However, it does not perform proper simulation scene preparation as we do in Sec. 3.2,
which causes it to fail under large movement in all cases for evaluation, and thus we left this method for further
quantitative comparison.

Besides, we show Y-T slices across all simulation steps in one case in Fig. 4. The epithelial tissue is lifted and then
released. Results show that our simulated tissue rapidly reverts to a quiescent state following a quick rebound.
Conversely, results from baseline show that the tissue continues to exhibit substantial oscillations post-rebound.
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Figure 5: Ablation on the trajectory and geometric regulation. (a) is the input video as a reference. (b) is the
result of multi-stage optimization. (c), (d) and (e) are the results of optimization without trajectory regularization,
geometric regularization, and both, respectively.

This discrepancy is attributed to the proposed Visco-Elastic model which effectively damps out oscillations by
simulating the inherent viscoelastic properties of the tissue.

We further provide quantitative comparisons in Tab. 1. We reproduce the operation in the input videos and
compare the render results with the ground truth. Given the same manipulation, our method shows the best
reproduction quality for our physics model behaves more like real tissue, driven by external forces.

Metric Ours Baseline Pcd Mesh
PSNR 455 22.367 20.44 21.102
SSIMtT  0.7315  0.7235 0.7068 0.6869
LPIPS| 0.1735 0.1759 0.2295 0.2819

Table 1: Quantitative results in terms of simulation quality.

The user study results are shown in Tab. 2. SurgiSim receives a significant preference across both groups, with a
77.8% preference rate among ordinary viewers and 57.8% among surgeons, significantly outperforming baseline
methods. Interestingly, surgeons show a more balanced evaluation, suggesting their professionalism for technical
nuances, yet still strongly favored SurgiSim.

Additionally, we provide the render quality of our canonical model compared with SOTA dynamic tissue recon-
struction methods (47; 47; 54; 34) on EndoNeRF in the supplementary material. Note that our canonical model is
for simulation environment preparation instead of reconstruction.

Group | Ours  Baseline Pcd Mesh | Ours  w.o. Guide
578% 25.6% 10.0% 6.7% | 65.6% 34.4%
(0] 77.8%  21.3% 05% 0.4% | 82.9% 17.1%

Table 2: User Study. S stands for surgeon and O for ordinary. The values are the mean percentages of each
choice.

4.3 Ablation and Analysis

Multi-Stage Optimization. In the multi-stage optimization, we employed trajectory regularization and geo-
metric regularization to enhance the geometric consistency. To assess their individual contributions, we conduct
ablation studies, and results are shown in Fig. 5. The result without trajectory regularization (c) achieves overall
sound quality, but the surfaces and edges of tissues are rough due to the lack of geometric consistency. The result
without geometric regularization (d) contains Gaussian kernels with severe anisotropy, which results in burrs on
the surface. These spiked kernels would result in unrealistic protrusions during surgical simulations.

We also provide a quantitative comparison in Tab. 3. Since the canonical model corresponds to the initial times-
tamp, rendering metrics are calculated over the first 25 frames. Without geometric regularization, the quality of
results is hindered by burrs on the surface. Omitting trajectory regularization doesn’t affect the metrics much.
As previously discussed, this regularization primarily influences the geometry of the canonical model rather than
render quality.

Physical Parameter Estimation. Fig. 4 shows the results of SurgiSim without video-guided parameter estima-
tion. While the tissue can rebound quickly because of good elastic parameters in the result of SurgiSim, the tissue
result without estimation would rebound very slowly with severe damping due to faulty viscous parameters. We
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Metric Ours Ww.0. traj W.0. geo w.0. both

SSIM?  0.9772 +0.0147 0.9770 + 00191  0.9730 + 0.0143  0.9754 + 0.0155
LPIPS, 0.0436 + 0.0245 0.0442 + 0.0359  0.0505 4+ 0.0230  0.0465 + 0.0268

Table 3: Quantitative results of quality of simulation environment.

also report the participants’ preferences on the results with and without physical parameter estimation in Table 2.
In both groups, participants show an obvious preference for the results with the inferred physical parameters.

5 Conclusion

In this paper, we present SurgiSim, an automated and flexible method for transforming monocular surgical videos
into simulation-ready scenes, and performing realistic physics surgical simulations within these environments.
SurgiSim employs multi-stage optimization with trajectory and anisotropic regularization to construct a geometri-
cally consistent simulation environment. By incorporating a Visco-Elastic deformation model and precise physical
parameters estimated from real videos, SurgiSim shows highly realistic tissue deformations during simulation. We
hope that SurgiSim could contribute to the development of more diverse and realistic surgical simulations.
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A Overview

The contents of this appendix include:

1. Attachment Descriptions (Sec. B).
2. Details of Material Point Method (Sec. C).
3. More Experimental Results (Sec. D).

4. More Implementation Details (Sec. E).

B Attachment Descriptions

We strongly suggest reviewing our attached HTML page, which contains the following materials:

1. More Visual Results: The video page includes demo videos showing different surgical operations across
various real surgical scenes. We also provide the complete videos referenced in Fig. 3 of the paper,
alongside quantitative comparisons between four methods (Pcd, Mesh, Baseline, SurgiSim) and ablation
results without Video Guide.

2. User Study Page: The original interface used in our user study, containing 9 sets of videos for qualitative
comparison and Video Guide ablation analysis.

Please click on ‘index.html’ and select ‘Videos’ to view all attachments.

Figure 6: Visualization of more simulation cases on different scenes using SurgiSim.

C Details of Material Point Method

The full MPM methods include particle-to-grid (P2G) and grid-to-particle (G2P) to transfer properties between
these particles and an Eulerian grid. Following Stomakhin et al. (44); Xie et al. (50), we use C'' continuous
B-spline kernels for two-way transfer. The mass and momentum are transferred from particles to grid nodes:

mi =Y mpwip, (16)
P
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Metric SurgiSim  EndoNeRF  EndoSurf LerPlane 4D-GS EndoGaussian

PSNR? 35.490 27.077 34.795 34.643 22.832 36.31
SSIMT 0.966 0.900 0.945 0.922 0.827 0.971
LPIPS] 0.056 0.107 0.119 0.072 0.368 0.050

Table 4: Quantitative comparison of reconstruction quality on the EndoNeRF dataset. While our method is not
specifically designed for novel-timestamp synthesis, it achieves competitive performance across all metrics.

mivi = Z my (vp + Cp(xi — Xp)) wip, (17
p

where m; is the mass at grid node 7, m,v,, are the mass and velocity of particle p and v; is the velocity at grid
node ¢. X; and x,, are the positions of grid node ¢ and particle p, respectively, w;;, is the B-spline weighting
function between particle p and grid node ¢ and C,, is the affine velocity matrix of particle p, capturing local
velocity gradients.

After grid velocities are updated, particle velocities and affine matrices are interpolated from the grid:

VZ+1 = Z u)ipv?’+1, (18)

Cp+1 = m Z WipV, +1(X’i — Xp)T, (19)

where V;L'H is the updated velocity of particle p, v?“ is the updated velocity at grid node 7, CZ“ is the updated

affine velocity matrix for particle p, Ax is the grid spacing and The term (x; — x,,)” represents the transpose of
the position difference vector.

D More Experimental Results

D.1 Visualization of Surgical Simulation

Fig. 6 presents additional simulation cases, performing different operations on each of the different surgical
scenes. The results demonstrate SurgiSim’s advanced capability to adapt to diverse new scenes and perform
various kinds of operations, including severe pulling and cutting. See the videos for Fig. 6 and more demos in
index.html.

D.2 Reconstruction Quality Analysis

We evaluate SurgiSim’s reconstruction capabilities against state-of-the-art dynamic tissue reconstruction methods
on the EndoNeRF dataset (47). For a fair comparison following the protocol in (52), we utilize the original dataset
masks and stereo depth information rather than our SAM-refined masks and estimated monocular depth.

Tab. 4 presents quantitative results comparing SurgiSim with EndoNeRF (47), EndoSurf (59), LerPlane (54),
4D-GS (49), and EndoGaussian (34). While these metrics primarily evaluate novel-timestamp synthesis capabili-
ties—which is not the primary objective of SurgiSim—our method still achieves compelling results, consistently
ranking second best across all metrics. This strong reconstruction performance, achieved as a byproduct of our fo-
cus on creating realistic surgical simulation environments, demonstrates SurgiSim’s capability to accurately model
tissue deformations across video frames, proving its powerful ability to extract high-quality canonical scenes from
dynamic inputs.

E More Implementation Details

E.1 Training and Performance

The training is per scene. For each input video, it takes less than 4 minutes to build a canonical scene from the
input video with Surface Thickening (Sec. 3.2) done. For physical parameter estimation, because we train in
a rolling manner (Sec. 3.3), the time complexity concerning the length of the operation is O(n?). The mean
optimization time is 10 minutes, but the time can reach 20 minutes for long sequences. When performing novel
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simulations after optimization, the simulation speed can reach 7 fps by setting the simulation step duration 10
times longer for fewer steps.

All experiments were conducted on a machine equipped with a Core i7-13700K CPU and a single NVIDIA RTX
4090 GPU, running Ubuntu 24.04. The code will be made public to promote the virtual surgery.

E.2 Details on User Study

To evaluate the fidelity of our simulations, we conducted a user study involving 68 participants including both
surgeons and laypersons. These participants were categorized into two distinct groups: the Surgeons group,
consisting of 44 board-certificated surgeons, and the Ordinary group, comprising 24 laypersons with no medical
background.

The study was structured into two parts. In the first part, participants were tasked with selecting one most realistic
simulation from four options, results from four different methods. In the second part, they were required to
choose one superior simulation between the two presented results. Each participant was exposed to nine sets of
simulation results, with the order of the sets randomized to prevent order bias. Before analysis, we executed a
basic data-cleaning process to remove any invalid or outlier responses.

We provide the page used for our user study in the supplement materials. To view the page, just click on the
‘index.html’ and select ‘User Study’.

E.3 Future Work

In the simulation environment setup, our method struggled to handle the invisible portions on the sides of the
tissues, leading to imperfections in the texture generated by our thickening approach. Similarly, the texture on the
exposed areas after cutting still lacked sufficient realism and required manual correction. In the future, we hope
to use diffusion or the large reconstruction model to fix these textures. Our method does not yet support more
complicated operations like topological inversions of structure. In the future, we hope to build a geometry-aware
MPM method based on 3D scene understanding techniques.



